Evaluating generalizability and parameter consistency in learning models
نویسندگان
چکیده
منابع مشابه
Evaluating generalizability and parameter consistency in learning models
The present study proposes a new evaluation method for learning models used for predicting decisions based on experience. The method is based on the generalization of models’ predictions at the individual level. First, it evaluates the ability to make a priori predictions for decisions on a new task using parameters previously estimated from a different task performed by an individual decision ...
متن کاملGeneralizability of Goal Recognition Models in Narrative-Centered Learning Environments
Recent years have seen growing interest in automated goal recognition. In user-adaptive systems, goal recognition is the problem of recognizing a user’s goals by observing the actions the user performs. Models of goal recognition can support student learning in intelligent tutoring systems, enhance communication efficiency in dialogue systems, or dynamically adapt software to users’ interests. ...
متن کاملGraphical models: parameter learning
“Graphical models” combine graph theory and probability theory to provide a general framework for representing models in which a number of variables interact. Graphical models trace their origins to many different fields and have been applied in wide variety of settings: for example, to develop probabilistic expert systems, to understand neural network models, to infer trait inheritance in gene...
متن کاملa contrastive analysis of concord and head parameter in english and azerbaijani
این پایان نامه به بررسی و مقایسه دو موضوع مطابقه میان فعل و فاعل (از نظر شخص و مشار) و هسته عبارت در دو زبان انگلیسی و آذربایجانی می پردازد. اول رابطه دستوری مطابقه مورد بررسی قرار می گیرد. مطابقه به این معناست که فعل مفرد به همراه فاعل مفرد و فعل جمع به همراه فاعل جمع می آید. در انگلیسی تمام افعال، بجز فعل بودن (to be) از نظر شمار با فاعلشان فقط در سوم شخص مفرد و در زمان حال مطابقت نشان میدهند...
15 صفحه اولParameter Estimation in Learning Object Class Models
The aim of the project is to learn and recognize object class models from unlabelled and unsegmented cluttered images based on the maximum likelihood unsupervised learning approach suggested by Weber et al [2,3]. The focus is on learning, in which the parameters of the object model are estimated using expectation maximization in a maximumlikelihood setting.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Games and Economic Behavior
سال: 2008
ISSN: 0899-8256
DOI: 10.1016/j.geb.2007.08.011